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Abstract. We propose a theoretical scheme to observe the loss of quantum coherence through the coupling
of the superconducting charge qubit system to a nanomechanical resonator (NAMR), which has already
been successfully fabricated in experiment and is convenient to manipulate. With a similar form to the
usual cavity QED system, this qubit-NAMR composite system with engineered coupling exhibits the col-
lapse and revival phenomenon in a progressive decoherence process. Corresponding to the two components
of superposition of the two charge eigenstates, the state of the nanomechanical resonator evolves simul-
taneously towards two distinct quasi-classical states. Therefore the generalized “which way” detection by
the NAMR induces the quantum decoherence of the charge qubit.

PACS. 03.65.-w Quantum mechanics – 74.50.+r Tunneling phenomena; point contacts, weak links,
Josephson effects – 03.67.Lx Quantum computation – 85.25.Dq Superconducting quantum
interference devices (SQUIDs)

1 Introduction

It is well-known that superposition of quantum states lies
at the very heart of modern quantum theory. In an ideal
situation, the quantum coherence implied by this superpo-
sition results in various fantastic phenomena [1]. However,
real systems are never isolated completely from the sur-
rounding environment. Interaction with external systems
(such as the environment) leads to entanglement between
them. The phase coherence of quantum system is then de-
stroyed [2]. This explains why quantum superposition does
not appear in the macroscopic world: this is the transition
from the quantum to the classical world [3].

This issue is directly related to the quantum measure-
ment problem where the coupling between the measured
system and the measuring apparatus (detector) will cause
the reduction of superposition or wave packet collapse [4].
It should be emphasized that the coupling between the
measured system and the detector can be controlled to im-
plement a process of quantum measurement. This is quite
different from coupling with a real environment, the de-
tailed knowledge of which is usually unavailable. In the
past few years, a cavity QED system [5] and trapped
ions [6] were utilized to demonstrate how to “engineer”
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the system-reservoir coupling so that the progressive de-
coherence can be observed with experimentally accessible
technologies. In this paper, we show that the detailed dy-
namics of quantum decoherence can be illustrated with
a solid state system – Josephson junction in the “qubit
way”–a two level approximation [7–11].

Recently a variety of qubits based on Josephson junc-
tion superconductor systems have been experimentally im-
plemented with a high quality factor [12,13]. Besides these
great advances in the implementation of the individual
Josephson junction qubits, there have been experiments
to demonstrate quantum coherence of two charge qubits
system [14] and two flux qubits system [15], and even a
conditional gate based on charge qubit was made [16]. In
this paper we demonstrate a dynamic decoherence process
in the charge qubit-NAMR composite system. As will be
shown in the following, this decoherence process can be
easily engineered by the bias voltage on the NAMR.

The experimental basis of our NAMR-based scheme
relies on the rapid progress in the development of nano-
mechanical devices. Notably, NAMRs were successfully
fabricated with high vibrational frequencies 10 MHz –
1 GHz, tiny mass 10−15 − 10−16 kg and high quality fac-
tor 103−105 [17]. Based on these experimental progresses,
some theoretical schemes were proposed to create and de-
tect the superposition of macroscopically distinct quan-
tum states of NAMR by entangling the resonator with



322 The European Physical Journal B

a Cooper pair box [18–20]. Most recently progress has
been made towards a quantum computational architec-
ture, for example the NAMR was integrated with JJ phase
qubits and worked as a novel quantum memory [21] like
the atomic ensemble [22], and quasi-spin excitons [23].

2 Charge qubit-NAMR composite system

As shown in Figure 1, the JJ charge qubit and the NAMR
are connected directly. Here C′ is the capacitance of the
resonator itself, the value of which depends on the res-
onator displacement x̂, C the capacitance of the junction.
Cg the bias capacitance, Cx the distribution capacitance
between the resonator and the CPB, and Vg the bias volt-
age on Cg, Vx the bias voltage on the resonator, EJ the
Josephson coupling energy of the CPB. ω0 is the frequency
of the NAMR. The Coulomb energy of the circuit can be
written as:

Hc =
2e2

CΣ (x)
(n̂− nt(x̂))2 , (1)

where the total capacitance is

CΣ (x̂) = C + Cg + Cx (x̂) , (2)

the total effective gate charge on the CPB is

nt (x̂) =
1
2e

(CgVg + Cx (x̂)Vx) , (3)

and

Cx (x̂) ≡ CxC
′

Cx + C′ . (4)

Assuming the distance between the resonator and the
CPB is much larger than the amplitude of zero point fluc-
tuation of x, i.e.

d� ∆x =
√

1
2mω0

,

then

Cx (x̂) ∼= Cx(1 − x

d
),

nt (x̂) ∼= ng + nx − nx
x̂

d
.

Here we have defined

ng,x =
Cg,xVg,x

2e
(5)

Set ng +nx = 0.5, we can use two-level approximation by
just considering |0〉c, |1〉c (the state |0〉c (|1〉c) represents
the state with no (one) cooper pair on the island). The
total Hamiltonian reads

H =
1
2
ωaσz − g

(
a+ a†

)
σx + ω0a

†a, (6)

gV

gC

xC

xV

C�

Fig. 1. A charge qubit is connected with a nanomechanical
resonator (in the dashed frame) for the controlled coupling of
charge qubits. Here C′ is the capacitance of the resonator itself.
C is the capacitance of the junction. Cg the bias capacitance,
Cx the distribution capacitance between the resonator and the
CPB, and Vg the bias voltage on Cg, Vx the bias voltage on
the resonator.

the coupling coefficient is

g = 4Ecnx
∆x

d
(7)

where

Ec =
e2

C + Cg + Cx
(8)

and
ωa = EJ . (9)

Here, the creation operator for the harmonic mode of the
NAMR is defined as usual

a† =
√

2
mω0

(mω0x− ip) . (10)

In the model Hamiltonian above we have neglected a con-
stant term. The quasi-spin operators are defined as

σx ≡ σ̃z = |0〉cc〈0| − |1〉cc〈1|,

σz ≡ −σ̃x = |1〉cc〈0| + |0〉cc〈1|.
Note that the Pauli matrices {σ̃x, σ̃y, σ̃z} are defined in
charge eigenstate, that is, |0〉c (|1〉c) denotes the state with
no (one) Cooper pair on the island. But for further conve-
nience we use another set of Pauli matrices as those with-
out tilde in a different representation {|0〉 , |1〉} defined as

|0〉 =
1√
2

(|0〉c + |1〉c)

and

|1〉 =
1√
2

(|0〉c − |1〉c) .
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3 The mode squeezing of NAMR

Under normal experiment conditions the energy spacing
of the CPB is much larger than that of the NAMR (as to
be shown in the subsequent paragraph), thus cannot in-
voke the rotation-wave-approximation (RWA). The above
model is quite similar to a cavity QED model without
RWA, which usually describes the interaction of a single
mode cavity and an off-resonance two-level atom [24]. In
this cavity QED model, when the detuning between the
cavity frequency and the |0〉 ↔ |1〉 transition frequency
is large enough to avoid any energy transfer between the
atom and the cavity, the atoms in different states |1〉 and
|0〉 will modify the phase of the cavity field in different
ways [5,25] and induce the quantum decoherence of atomic
states superposition.

The large detuning condition

γ =
g

|ωa − ω0| � 1 (11)

can be satisfied by taking proper parameters in experi-
ments [13,18,20]. For example, we can take Ec ∼ 160 µeV,
EJ ∼ 50 µeV, ω0 = 0.5 µeV, the coupling capacitance
Cx ∼ 20 aF, and Vx ∼ 1V, so that nx ∼ 60. Then we have

g ∼ 0.1 µeV, γ ∼ 2.20 × 10−3 � 1.

We note that the rotation-wave-approximation condition
cannot be satisfied in this system. With the above con-
sideration of rational parameters in experiments, we adi-
abatically eliminate coherence effects between |1〉 and |0〉.
Then we obtain an effective Hamiltonian

Heff = H1|1〉〈1| +H0|0〉〈0|
which is diagonal with respect to |0〉 and |1〉. Here, the
effective actions on the NAMR from the two qubit states
|1〉 and |0〉 are

Hk
∼= ω0a

†a+ (−1)k ωa

2

− (−1)k g
2

4δ
(
2a†a+ a2 + a†2 + 1

)
(12)

for k = 0, 1 respectively and δ = ωa −ω0. Heff is a typical
effective Hamiltonian generating the quantum entangle-
ment of the subsystems. That is, starting from a factorized
initial state

|ψ(0)〉 = (c0|0〉 + c1|1〉) ⊗ |s(0)〉,
the total system driven by Heff will evolve into an entan-
gled state

|ψ(t)〉 = c0|0〉 ⊗ |s0(t)〉 + c1|1〉 ⊗ |s1(t)〉 (13)

where

|sk(t)〉 = exp(−iHkt)|s(0)〉 (k = 0, 1) (14)

and |s(0)〉 is the initial state of the NAMR. Therefore, the
superposition of the charge states |0〉 and |1〉 will drive

the state of the NAMR to evolve along the two directions
|s0(t)〉 and |s1(t)〉.

It is very interesting to observe that the components
Hamiltonian H1 and H0 are of Hermitian quadratic form
of creation and annihilation operators. Mathematically,
they are the same as that used to produce the degener-
ate parametric amplifier in nonlinear quantum optics with
classical pump [26]. Defining a new set of bosonic opera-
tors Ak as the linear combinations of a and a†

Ak = µka− νka
†, (15)

where

µk =
1
2
(
√
Nk +

1√
Nk

)

νk =
1
2
(
√
Nk − 1√

Nk

) (16)

and

Nk =

√
ω0δ

ω0δ − (−1)k g2
. (17)

The Hamiltonian can then be written as

Hk = Ωk

(
A†

kAk +
1
2

)
+ (−1)k

(
ωa

2
− g2

4δ

)
. (18)

Correspondingly the new eigenenergy

Ωk
∼= ω0

(
1 − (−1)k g2

2ω0δ

)
. (19)

Since
|µk|2 − |νk|2 = 1, (20)

we can see the coherent state in terms of Ak is the squeeze
state of a. The two operators a and Ak can be transformed
into each other though a unitary operator Sk, i.e.

S†
kaSk = Ak. (21)

The explicit form of Sk in terms of Ak is

Sk ≡ exp
[rk

2
A2

k − rk
2
A†2

k

]
, (22)

where rk is defined by

µk = cosh rk, νk = sinh rk. (23)

Suppose the initial state of the NAMR is the coherent
state |α〉, i.e.

a |α〉 = α |α〉 , (24)

According to equation (21),

|α〉 = Sk |α〉Ak
. (25)

The component HamiltoniansH0 andH1 can create differ-
ent squeezing of the harmonic mode of the NAMR during
the time evolution, i.e.

e−iΩkA†
kAkt |α〉 = e−iΩkA†

kAktSk |α〉Ak

= e−iΩkA†
kAkt |α, µk, νk〉Ak

(26)

= |α, µk(t), νk(t)〉Ak
. (27)
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Here, the state with the subscript Ak is defined in terms
of the operator Âk, that is,

Âk|α〉Ak
= α|α〉Ak

,(
µkAk + νkA

†
k

)
|α, µk, νk〉Ak

= α|α, µk, νk〉Ak
. (28)

and
µk(t) = µke

iΩkt, νk(t) = νke
−iΩkt. (29)

Notably, H0 and H1 may drive the state of the NAMR
from the same coherent state |α〉 into two different
squeezed states |α, µ0(t), ν0(t)〉A0 and |α, µ1(t), ν1(t)〉A1

respectively [27]. With the above considerations, we can
evaluate the time evolution of the total system and obtain
the wave function of the NAMR at time t

|sk(t)〉 = e
i(−1)k

(
g2
4δ −ωa

2

)
t−i

Ωk
2 t|α, µk(t), νk(t)〉Ak

. (30)

The above calculations demonstrate that the off-resonance
interaction between the NAMR oscillator mode and the
different charge qubit will result in a dynamic squeezing
split of the quasi-classical state |α〉 of NAMR. The two
splitting components with different squeezing are repre-
sented by different squeezing states.

4 Engineering decoherence of charge qubit

It is known that, dominated by the Hamiltonian Heff ,
the conditional dynamics process described above tends
to an ideal pre-quantum measurement when the over-
lap 〈s1(t)|s0(t)〉 approaches zero [31]. Physically the pre-
measurement implies quantum decoherence of the charge
qubit. To see this we consider the reduced density matrix
of the charge qubit at time t. Its off-diagonal elements
are determined by c∗1c0〈s1(t)|s0(t)〉 and vanish completely
as the overlapping 〈s1(t)|s0(t)〉 approaches zero. In this
sense, the decoherence factor defined by

D(t) = |〈s1(t)|s0(t)〉|
characterizes the extent of decoherence and the time-
dependent behavior of D(t) means a progressive process
of decoherence or so called progressive decoherence. The
very sharp peaks in D(t) curves may originate from the
reversibility of the Schrödinger equation for few body sys-
tem [4,25].

Correspondingly, the decoherence factor characterizing
quantum decoherence is

D(t) ∼= exp
(
−2|α|2 sin2

(
g2

2δ
t

))
(31)

where the condition g
δ � 1 has been taken into consid-

eration. The decoherence phenomenon with collapse and
revival illustrated in Figure 2 is quite typical. It was found
theoretically [4,28] in 1993, and the possibility of imple-
menting its observation in cavity QED experiment was
also pointed out in reference [25]. In 1997 it was also inde-
pendently discussed [5] with another cavity QED setup.

0 50 100 150 200 250
t

0

0.2

0.4

0.6

0.8

1

D(t)

Fig. 2. The time-dependence of decoherence factor with dif-
ferent |α|2 = 0.1 (dot line), |α|2 = 0.6 (dash line), |α|2 = 4
(solid line). The larger |α| means more exact “detection” of
this qubit, or the one-mode reservoir is more classical. It leads
to a clear vanishing of coherence.

There are two time scales to depict the revival-collapse
behaviors of decoherence process. In a very short time de-
parture from t = 0,

D(t) ≈ exp
(
−2|α|2g4

δ2
t2

)
, (32)

a fast Gaussian decay with large |α| happens in a time
scale

τ1 =
2δ
g2|α| , (33)

which is much shorter than the time scale

τ2 =
2πδ
g2

(34)

of the revival of the coherence. With the above parameters
implemented in the experiments, we estimate τ1 � 1.38×
10−6 s and τ2 � 9.55 × 10−6 s for |α| = 30. The time-
dependence of decoherence factor with different |α|2 = 0.1
(dot line), |α|2 = 0.6 (dash line), |α|2 = 4 (solid line). The
larger |α| means the more exact “detection” about this
qubit or the one-mode reservoir is more classical. It leads
to an evident vanishing of coherence.

However, the decoherence factor D(t) can not be di-
rectly observed. Its implied decoherence phenomenon with
collapse and revival can only be reflected in an indirect
way, which is similar to the cavity QED case in which the
level populations were measured. A way to observe the
engineered quantum decoherence phenomenon of this sys-
tem is to detect the current through the probe junction
connected to the Cooper pair box electrode [29]. When the
charge qubit is in the high level state |1〉c, there are two
tunnelling electrons passing the probe junction. In fact,
under a proper bias condition, the state decays into |0〉c
via two single-electron tunnelling through the probe junc-
tion. In comparison with the case of atomic cavity QED,
the advantage using charge qubit to test one-bit reservoir
induced decoherence is due to the macroscopical nature of
the superconductive system and the well-controlled nature
of the coupling to one-bit engineered reservoir.

As usual, it is difficult to observe the two electrons via
a single trial, but one can see an average effect of this
tunnelling process. Another role of the probe junction is
the preparation of the initial state by relaxing the Cooper
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Fig. 3. The oscillation of the charge current with |α|2 = 4.

pair box to the ground state for a second trial. The cur-
rent is proportional to the charging rate of the occupation
probability

P1(t) = Tr(ρ|1〉cc〈1|) (35)

of Cooper pair in |1〉c. The corresponding current

I(t) =
∂

∂t
(−2eP1(t)) (36)

is explicitly expressed for the case with c0 = c1 = 1√
2

as

I(t) ≈ eD(t)
{
g2|α|2
δ

[
sin

g2

δ
t cos

(
ωat+ |α|2 sin

g2

δ
t

)

× (1 − 2 cos 2ω0t) + cos
g2

δ
t sin

(
ωat+ |α|2 sin

g2

δ
t

)

× (1 − 2 sin 2ω0t)
]

+ ωa sin
(
ωat+ |α|2 sin

g2

δ
t

)}
.

(37)

The oscillation of the charge current with |α|2 = 4. The
oscillation of the current is demonstrated in Figure 3. It
can be seen that the current oscillates sinusoidally, and
the coupling to external reservoir adds the periodical am-
plitude modulation as the direct manifestation of deco-
herence. Experimentally, one can use the ratio of envelope
width and the fixed period to measure the extent of deco-
herence quantitatively.

5 Conclusion with remarks

To observe this engineered quantum decoherence process,
the system should be screened from decoherence and dis-
sipation caused by the environment. The quality factor
actually plays an important role in the experimental re-
alization of the proposal. Due to the realistic quantum
decoherence resulting from various mechanisms, such as
background charge fluctuation, voltage-current damping
and so on, the quality factor of the Cooper pair box in
the present experiment is not high enough for demonstra-
tion of the subtle behaviors in our engineered decoherence.
For the coupled system, the quality factor might be even

worse. However, with the rapid progress of experimental
technologies on Josephson junction qubits, the coherence
of this kind of charge qubit might be enhanced greatly in
the near future.

Another difficulty in the experimental implemention
of the above theoretical setup is to initially prepare the
large junction in a coherent state. The scheme to cool the
NAMR to ground state has been proposed [20]. If the ex-
ternal sources can add the linear force proportional to x
or p, they may force the NAMR oscillation mode to evolve
into a coherent state from the vacuum state. For exam-
ple, we apply a magnetic field along the direction of the
beam of the NAMR with charge distributed on it. When
the beam oscillates harmonically, the Lorentz force will
act on the resonator. The force is just proportional to p.
The magnitude of the coherent state is proportional to
the external magnetic field. In practice, the initial state
may be easily prepared in a thermal equilibrium at fi-
nite temperature, but this state is described by a diagonal
density matrix in the coherent-state representation (“Q-
representation”). Thus, the collapse and revival of coher-
ence described above can still be observed and the increase
of the temperature can enhance it. For the cavity QED
case we have shown this enhancement effect by straight-
forward calculations [25]. The same calculations can be
done here for the charge qubit.

Finally we give two remarks. (1) We note that
the relevant quantum measurement problem of Joseph-
son junction qubit has been considered theoretically
by Averin [30]. He extends the concept of quan-
tum non-demolition (QND) measurement to coher-
ent Rabi oscillation of JJ qubit. The advantage of
such QND measurement is that the detector in-
duced decoherence can be avoided during the observa-
tion of the oscillation spectrum. This suggested that
a scheme combining flux and charge qubit may be
used in our setup to detect the engineered quantum
decoherence without “additional quantum decoherence”.
(2) As normally understood [31], the quantum decoher-
ence reflects the complementarity since the nanomechan-
ical resonator mode plays the role of carrying away infor-
mation about the phase of the charge qubit. The phase
uncertainty appears when enough information of qubit is
determined by the nanomechanical resonator in a clas-
sical state. The more precise the information about the
phase of the qubit we obtain, the stronger the influence
the resonator mode will exert on the qubit. The revival
of coherence results substantially from the fact that the
reservoir is only of a single mode. Its origin lies in the re-
versibility of the time evolution for systems of few degrees
of freedom, governed by the Schrödinger equation.
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